Lijinrui299792458

不做沉底的木做举重若轻的船。

外观数列

Introduction

picture 1

picture 2

Theory

注:在以下讨论中将不会考虑 $[ \ ]$ 和 $[2^2]$ 单独出现的乏趣情形。

可以想到将一个长的串分割为数个不相干的段。考虑段之间的情形,即考虑一个段的开头和结尾。

在此之前,对于从 $[a^{\alpha}b^{\beta}\cdots]$ 开始的序列,若
$$
[a^{\alpha}b^{\beta}\cdots]\to[(a’)^{\alpha’}(b’)^{\beta’}\cdots]
$$
显然 $\alpha’\le\lfloor\lg\alpha\rfloor+\lfloor\lg\beta\rfloor+3$,故在充分多次操作后串中不可能出现 $X^{\ge4} \ or \ X^3Y^3 \ or\ 3^3$

故,若考虑一个没有 $X^{\ge4} \ or \ X^3Y^3 \ or\ 3^3$ 的串的开头,讨论可能出现的情况:
$$
[n^m(n\ge4)\to[m^1
$$

$$
\begin{array}{l}[n^1(n\ge4)\to[1^1X^1\to[1^3\to[3^1X^{(\ne3)}\to[1^1X^1\end{array}
$$

$$
\begin{array}{l}[1^1X^{\ne1}&\to &[1^2X^1 &\to&[2^11^2&\to&[1^12^2&\to&[1^2X^{\ne2}\\
&\searrow\\
& &[1^2X^{\ne1}&\to&[2^1X^{\ne2}&\to&[1^1X^1\end{array}
$$

$$
\begin{array}{l}[2^1X^2\to[1^1X^{\ne1}\end{array}
$$

$$
\begin{array}{l}[2^3X^{\ne2}\to[3^12^1\end{array}
$$

$$
[2^3X^2\to[3^12^2
$$

$$
[3^1\to[1^1
$$

$$
[3^2\to[2^1
$$

除了 $[2^2$,所有的串都将进入 $[1^1X^1\to[1^3\to[3^1X^{(\ne3)}\to[1^1X^1$ 的循环。
$$
[2^21^1X^1\to[2^21^3\to[2^23^1X^{\ne3}\to[2^21^1X^1
$$

$$
[2^21^1X^{\ne1}\to[2^21^2\to[2^3
$$

$$
[2^2X^2\to[2^3
$$

$$
[2^2(\ne1,\ne2)^1\to[2^21^1
$$

另一个循环是 $[2^21^1X^1\to[2^21^3\to[2^23^1X^{\ne3}\to[2^21^1X^1$

进行下一步之前,还需要一个引理:如果一个段是 $n$ 结尾的,那么它永远是 $n$ 结尾的。

现在如果 $[LR]$ 中 $L$ 和 $R$ 是两个独立的段,那么将此串记作 $[L.R]$。表中的 $LR$ 都可记作 $L.R$。

$L$ $R$
$n](n\ge4)$ $[m(m\le3)$
$2]$ $[n^1 \ or \ [1^1X^1 \ or \ [1^3 \ or \ 3^1X^{(\ne3)}$ (循环 1)
$\ne2]$ $[2^21^1X^1 \ or \ [2^21^3 \ or\ [2^23^1X^{(\ne3)} \ or \ [2^2] \ or\ [2^2n^1$ (循环 2)

对于结尾:

$$
1^3]\to(\ne2)1^1]\to(\ne2)1^2]\to2^{\ne2}1^1]\to2^{(\ne2)}1^2]\to2^21^1]\to2^21^2]\to2^31^1]
$$

对于 $n>1:$

picture 3

picture 4

可以看到在循环中所出现的一些段:
$$
11132\to 311312\to 1321131112\to 11131221133112\to 311311222.12.32112
$$

$$
311311222\to1321132.132
$$

$$
1321132\to111312211312\to3113112221131112\to1321132.13221133112
$$

$$
13221133112\to1113222.12.32112
$$

$$
1113222\to311332\to132.12.312
$$

$$
132\to111312\to31131112\to1321133112\to11131.22.12.32112
$$

$$
12\to1112\to3112\to132112\to1113122112\to311311222112\to1321132.1322112
$$

$$
1322112\to1113222112\to3113322112\to132.123222112
$$

$$
123222112\to111213322112\to31121123222112\to132112211213322112\to111312212221121123222112\to
$$

$$
3113112211322112211213322112\to1321132122211322212221121123222112\to
$$

$$
111312211312113221133211322112211213322112\to31131122211311122113222.12.312211322212221121123222112
$$

$$
31131122211311122113222\to1321132.13221133122211332
$$

$$
13221133122211332\to1113222.12.3113.22.12.312
$$

$$
3113\to132113\to1113122113\to311311222113\to1321132.1322113
$$

$$
1322113\to1113222113\to3113322113\to132.123222113
$$

$$
123222113\to111213322113\to31121123222113\to132112211213322113\to111312212221121123222113\to
$$

$$
3113112211322112211213322113\to1321132122211322212221121123222113\to
$$

$$
111312211312113221133211322112211213322113\to31131122211311122113222.12.312211322212221121123222113
$$

$$
312211322212221121123222113\to13112221133211322112211213322113\to
$$

$$
11132.13.22.12.312211322212221121123222113
$$

$$
13\to1113\to3113
$$

$$
312211322212221121123222112\to13112221133211322112211213322112\to
$$

$$
11132.13.22.12.312211322212221121123222112
$$

$$
312\to131112\to11133112\to312.32112
$$

$$
32112\to13122112\to111311222112\to31132.1322112
$$

$$
31132\to13211312\to11131221131112\to3113112221133112\to1321132.13.22.12.32112
$$

$$
13211322211312113211\to1113122113322113111221131221\to311311222.12322211331222113112211
$$

$$
12322211331222113112211\to1112133.22.12.311322113212221
$$

$$
1112133\to3112112.3
$$

$$
3112112\to1321122112\to11131221222112\to3113112211322112\to13211321222113222112\to
$$

$$
11131221131211322113322112\to31131122211311122113222.123222112
$$

$$
3\to13
$$

$$
311322113212221\to13211322211312113211
$$

$$
11131\to311311\to13211321\to11131221131211\to311311222113111221\to1321132.1322113312211
$$

$$
1322113312211\to1113222.12.3112221
$$

$$
3112221\to132.13211
$$

$$
13211\to11131221\to3113112211\to132113212221\to111312211312113211\to311311222113111221131221
$$

$$
\to1321132.132211331222113112211
$$

$$
132211331222113112211\to1113222.12.311322113212221
$$

$$
311322113212221\to13211322211312113211
$$

整理可得 92 个基本串,即元素:

# Subsequence Len Evolves Into
1 1112 4 (63)
2 1112133 7 (64)(62)
3 111213322112 12 (65)
4 111213322113 12 (66)
5 1113 4 (68)
6 11131 5 (69)
7 111311222112 12 (84)(55)
8 111312 6 (70)
9 11131221 8 (71)
10 1113122112 10 (76)
11 1113122113 10 (77)
12 11131221131112 14 (82)
13 111312211312 12 (78)
14 11131221131211 14 (79)
15 111312211312113211 18 (80)
16 111312211312113221133211322112211213322112 42 (81)(29)(90)
17 111312211312113221133211322112211213322113 42 (81)(29)(91)
18 11131221131211322113322112 26 (81)(30)
19 11131221133112 14 (75)(29)(92)
20 1113122113322113111221131221 28 (75)(32)
21 11131221222112 14 (72)
22 111312212221121123222112 24 (73)
23 111312212221121123222113 24 (74)
24 11132 5 (83)
25 1113222 7 (86)
26 1113222112 10 (87)
27 1113222113 10 (88)
28 11133112 8 (89)(92)
29 12 2 (1)
30 123222112 9 (3)
31 123222113 9 (4)
32 12322211331222113112211 23 (2)(61)(29)(85)
33 13 2 (5)
34 131112 6 (28)
35 13112221133211322112211213322112 32 (24)(33)(61)(29)(90)
36 13112221133211322112211213322113 32 (24)(33)(61)(29)(91)
37 13122112 8 (7)
38 132 3 (8)
39 13211 5 (9)
40 132112 6 (10)
41 1321122112 10 (21)
42 132112211213322112 18 (22)
43 132112211213322113 18 (23)
44 132113 6 (11)
45 1321131112 10 (19)
46 13211312 8 (12)
47 1321132 7 (13)
48 13211321 8 (14)
49 132113212221 12 (15)
50 13211321222113222112 20 (18)
51 1321132122211322212221121123222112 34 (16)
52 1321132122211322212221121123222113 34 (17)
53 13211322211312113211 20 (20)
54 1321133112 10 (6)(61)(29)(92)
55 1322112 7 (26)
56 1322113 7 (27)
57 13221133112 11 (25)(29)(92)
58 1322113312211 13 (25)(29)(67)
59 132211331222113112211 21 (25)(29)(85)
60 13221133122211332 17 (25)(29)(68)(61)(29)(89)
61 22 2 (61)
62 3 1 (33)
63 3112 4 (40)
64 3112112 7 (41)
65 31121123222112 14 (42)
66 31121123222113 14 (43)
67 3112221 7 (38)(39)
68 3113 4 (44)
69 311311 6 (48)
70 31131112 8 (54)
71 3113112211 10 (49)
72 3113112211322112 16 (50)
73 3113112211322112211213322112 28 (51)
74 3113112211322112211213322113 28 (52)
75 311311222 9 (47)(38)
76 311311222112 12 (47)(55)
77 311311222113 12 (47)(56)
78 3113112221131112 16 (47)(57)
79 311311222113111221 18 (47)(58)
80 311311222113111221131221 24 (47)(59)
81 31131122211311122113222 23 (47)(60)
82 3113112221133112 16 (47)(33)(61)(29)(92)
83 311312 6 (45)
84 31132 5 (46)
85 311322113212221 15 (53)
86 311332 6 (38)(29)(89)
87 3113322112 10 (38)(30)
88 3113322113 10 (38)(31)
89 312 3 (34)
90 312211322212221121123222112 27 (35)
91 312211322212221121123222113 27 (36)
92 32112 5 (37)

定义一个向量 $\vec{v}$,向量的第 $n$ 项为当前串中第 $n$ 个元素的个数。则下一个串为:
$$
\vec{v}’=A\vec{v},\vec{v_n}=A^n\vec{v_0}
$$
其中 $A$ 为一个矩阵,如果 $(i)$ 能产生 $x$ 个 $(j)$,则第 $i$ 列第 $j$ 行为 $x$。

再定义一个向量 $\vec{u}$,其第 $i$ 项代表 $len(i)$。则
$$
L=\vec{u}\cdot\vec{v}
$$
设矩阵 $A$ 绝对值最大的特征值为 $\lambda_0$ ,
$$
\vec{v}=A^n\vec{v_0}=A^n\left(a_0\vec{w_0}+\cdots+a_k\vec{w_k}+\cdots\right)=\lambda_0^n\left(a\vec{w_0}+a_1\cdot\left(\frac{\lambda_1}{\lambda_0}\right)^n\vec{w_1}+\cdots\right)
$$

根据 Perron–Frobenius 定理,$\forall k>0,|\lambda_k|<|\lambda_0|$,故有

$$
\lim_{n\to+\infty}\left(\frac{\lambda_k}{\lambda_0}\right)^n=0,\lim_{n\to+\infty}A^n\vec{v_0}=\lambda_0^na\vec{w_0}
$$
因此 Conway 常数 $\lambda=\lambda_0$。

可得方程

$$
x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}-12x^{39}+7x^{38}-7x^{37}+7x^{36}-x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}-7x^{21}+9x^{20}+3x^{19}-4x^{18}-10x^{17}-7x^{16}+12x^{15}+7x^{14}+2x^{13}-12x^{12}-4x^{11}
-2x^{10}+5x^{9}+x^{7}-7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6=0
$$

可解得 $\lambda\approx1.3035772690342963912570991121525498$